Solvent effects on the ultrafast dynamics and spectroscopy of the charge-transfer-to-solvent reaction of sodide
نویسندگان
چکیده
In ‘‘outer sphere’’ electron transfer reactions, motions of the solvent molecules surrounding the donor and acceptor govern the dynamics of charge flow. Are the relevant solvent motions determined simply by bulk solvent properties such as dielectric constant or viscosity? Or are molecular details, such as the local solvent structure around the donor and acceptor, necessary to understand how solvent motions control charge transfer? In this paper, we address these questions by using ultrafast spectroscopy to study a photoinduced electron transfer reaction with only electronic degrees of freedom: the charge-transfer-to-solvent ~CTTS! reaction of Na ~sodide!. Photoexcitation of Na places the excited CTTS electron into a solvent-bound excited state; motions of the surrounding solvent molecules in response to this excitation ultimately lead to detachment of the electron. The detached electron can then localize either in an ‘‘immediate’’ contact pair ~in the same cavity as the Na atom!, which undergoes back electron transfer to regenerate Na in ;1 ps, or in a ‘‘solvent-separated’’ contact pair ~one solvent shell away from the Na atom!, which undergoes back electron transfer in tens to hundreds of picoseconds. We present detailed results for the dynamics of each step of this reaction in several solvents: the ethers tetrahydrofuran, diethyl ether and tetrahydropyran and the amine solvent hexamethylphosphoramide ~HMPA!. The results are interpreted in terms of a kinetic model that both incorporates spectral shifting of the reaction intermediates due to solvation dynamics and accounts for anisotropic spectral diffusion in polarized transient hole-burning experiments. We find that the rate of CTTS detachment does not correlate simply with any bulk solvent properties, but instead appears to depend on the details of how the solvent packs around the solute. In contrast, the rate for back electron transfer of solvent-separated contact pairs varies inversely with solvent polarity, indicating a barrier to recombination and suggesting that this reaction lies in the Marcus inverted regime. For immediate contact pairs, the rate of recombination varies directly with solvent polarity in the ethers but is slowest in the highly polar solvent HMPA, suggesting that the spatial extent of the solvated electron in each solvent is one of the major factors determining the recombination dynamics. The fact that each step in the reaction varies with solvent in a different way implies that there is not a single set of solvent motions or spectral density that can be used to model all aspects of electron transfer. In addition, all of the results and conclusions in this paper are compared in detail to related work on this system by Ruhman and co-workers; in particular, we assign a fast decay seen in the near-IR to solvation of the CTTS p-to-p excited-state absorption, and polarization differences observed at visible probe wavelengths to anisotropic bleaching of the Na CTTS ground state. © 2003 American Institute of Physics. @DOI: 10.1063/1.1557054#
منابع مشابه
Building a molecular-level picture of the ultrafast dynamics of the charge-transfer-to- solvent (CTTS) reaction of sodide (Na–)*
Charge-transfer-to-solvent (CTTS) reactions represent the simplest possible electron-transfer reaction. One of the reasons that such reactions have become the subject of recent interest is that transfer of a CTTS electron from an atomic anion to the solvent involves only electronic degrees of freedom, so that all the dynamics involved in the reaction are those of the solvent. Thus, CTTS reactio...
متن کاملThe roles of the solute and solvent cavities in charge-transfer-to-solvent dynamics: ultrafast studies of potasside and sodide in diethyl ether.
Although electron transfer reactions are among the most fundamental in chemistry, it is still not clear how to isolate the roles of the solute and solvent in moving charge between reactants in solution. In this paper, we address this question by comparing the ultrafast charge-transfer-to-solvent (CTTS) dynamics of potasside (K(-)) in diethyl ether (DEE) to those of sodide (Na(-)) in both DEE an...
متن کاملWatching Na atoms solvate into (Na+,e-) contact pairs: untangling the ultrafast charge-transfer-to-solvent dynamics of Na- in tetrahydrofuran (THF).
With the large dye molecules employed in typical studies of solvation dynamics, it is often difficult to separate the intramolecular relaxation of the dye from the relaxation associated with dynamic solvation. One way to avoid this difficulty is to study solvation dynamics using an atom as the solvation probe; because atoms have only electronic degrees of freedom, all of the observed spectrosco...
متن کاملSearching for solvent cavities via electron photodetachment: the ultrafast charge-transfer-to-solvent dynamics of sodide in a series of ether solvents.
It was recently predicted by simulations and confirmed by neutron diffraction experiments that the structure of liquid tetrahydrofuran (THF) contains cavities. The cavities can be quite large and have a net positive electrostatic potential, so they can serve as pre-existing traps for excess electrons created via photodetachment from various solutes. In this paper, we use electron photodetachmen...
متن کاملOptical control of electrons during electron transfer.
The dynamics of electron transfer reactions in solution can be controlled with the use of a sequence of femtosecond laser pulses. In the charge transfer to solvent (CTTS) reaction of sodide (Na-) in tetrahydrofuran, an initial light pulse launched the CTTS reaction, ejecting an electron into either an immediate or a solvent-separated Na0:solvated electron contact pair. A second pulse was used t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003